High Current Pulse Generator for the Application of Transcranial Magnetic Stimulation

Clients/ Advisors: Priyam Rastogi, Neelam Gaunkar, Jayaprakash Selvaraj, Dr. Mani Mina

<u>Project Objective</u>: Over the course of 2 semesters, design, fabricate, and test a high-current pulse generation device for use in TMS research.

• Objective of Circuit

Peak Current of 2 KA +10% EMF feedback must be considered
Peak Current Sustained for 400 μs
Rise/fall time of 100 μs
Up to 36 Hz pulse frequency (Commercial Benchmark)
Circuit Input is 120 V wall outlet.
Range of Load - 5 micro-Henry (min) to Max(Undefined)
10 pulses a minute max
Circuit shall be monophasic; If successfully completed then a biphasic version shall be built.
The device shall output multiple waveforms (Square, Sawtooth, etc.)

Team Members:

Brian Kirkpatrick: Head of Circuit Design Jon Rothfus: Head of Micro-Controllers, Team Communications Leader, Webmaster Tania Alvarado Carias: Head of Electrical Safety Abdul Bahashawn: Head of Rectification Circuits Yan Wang: Head of Component Selection Curtis Richards: Team Leader

Sub Teams:

Chassis Design: Tania, Curtis, Yan Rectification Circuit: Abdul, Yan, Brian Power Circuit: Tania, Curtis, Abdul Micro Controller: Jon, Brian -Meets Thursdays 2:00-2:30 p.m. Howe -Meets Fridays 2:00-3:00 p.m. Marston -Meets Fridays 11:15-12:00 p.m. TLA -Meets Wednesdays 1:15-1:45 in TLA

Weekly Summary:

• Power Circuit:

We began mounting parts on the chassis base. However, all efforts later in the week were shifted to the transformer to correct an unbonded neutral.

• Chassis Design:

The chassis base has been drilled to mount parts.

• Micro-Controller (M.C.):

This week we began testing the IGBT using standard test instruments in the labs. As the IGBT gate will be driven by the MC, we needed to verify pinout and basic operation before testing MC control of the IGBT. At this point in testing with low voltages and current the IGBT appears to operate as expected, but testing of switching with much higher voltages and a range of loads applied is needed.

• Rectification Circuit:

We began and completed the soldering process of our rectification circuit. We made three separate full bridge rectifying circuits as the board was large enough and it is good to have backups and we also checked out the transformer's performance using a multimeter.

Accomplishments of the Past Week:

Each member is to write up a reflection on their work throughout the week. The reflections can be found at https://iastate.app.box.com/folder/46145323949

Pending Issues:

- I. Due Datesa. Weekly Report to be filled out by <u>Saturday at midnight</u>
- II. Team Reports
 - a. Update your sub team sections accordingly

New Business:

- 1. Project Plan V2
 - a. Proposed Design and Solution Abdul
 - b. Project Time Line Yan
 - c. Risk Feasibility Tania

EE/CPRE/SE 491 Weekly Report 8 Date: Week of March 26, 2018 Group Number 4

- d. Standards Chuck
- 1. Circuit construction should be finished by Friday, so that individual circuit testing may begin Monday.

Individual Contributions:

Group	Accomplishments	Time	Total Time				
Member		Worked This	Worked				
		Week					
Abdul	Implemented and soldered a rectifier on a PCB and	4	26				
	rested it. Prepared for class presentation. Worked on						
	Project Plan, and did some research and calculations						
	on using LED for safety as a sign of charged or						
	charging capacitors.						
Yan	Stripped wires for soldering job. Solder the	6.5	29				
	rectification circuit on PCB based off where the						
	input and output pins were located. Began placing						
	parts on the Chassis "box" as per the design on the						
	template. Used multimeter and recorded the voltage						
	going into certain components after plugging in the						
	transformer. Afterwards to be extra cautious, we						
	plugged the transformer in a different wall outlet						
	and again recorded the voltage across the						
	transformer, rails and boards. Updated the Gantt						
	chart to where we are currently.						
Jon	Tested pinout and operation of IGBT using power	4	28				
	supplies, function generator and scope/DMM. All						
	testing was done with voltages under 20 V and a						
	load in the Mega Ohm range attached for device						
	protection. IGBT appears to behave as expected						
	expected at this low voltage range.						
Brian	Soldered the rectifier circuit on PCB and made a	7	34				
	layout for other team members to get some practice						
	with soldering. Shopped for some capacitor						
	restraints for mounting. Took the baseboard home						
	and laid out paper design and drilled pilot holes for						
	component mounting.						
Tania	Drilled the holes in the chassis box for the	6	27				
	components, prepared wires to connect them to the						
	rails, fixed an issue with the voltage of the						
~ 1	transformer with Chuck and Yan.						
Chuck	I spent time drilling holes and gluing our rails to the	8	63				
	chassis base. Yan, Tania, and I troubleshooted a						

stray voltage found in the transformer due to an	
unbonded neutral.	

Current Progress:

TMS Project Timeline

Select a period to highlig	ght at right. A	legend describ	ing the cha	rting follows.	Period High	li 1 🔻			Plan	Durati	on				Actua	al Start				% Cor	mplete	e
ACTIVITY	PLAN START	PLAN DURATION	ACTUAL START	ACTUAL DURATION	PERCENT COMPLETE	Jan 8th	Jan 15th	Jan 22nd	Jan 29th	Feb 5th	Feb 12th	Feb 19th	Feb 26th	Mar 5th	Mar 12th	Mar 19th	Mar 26th	Apr 2nd	Apr 9th	Apr 16th	Apr 23rd	Ap 30t
						-	2	3	4	5	6	/	8	9	10	11	12	13	14	15	10	1/
Define Criteria	1	5	1	5	100%																	
Early concept& Implementation	3	5	3	6	100%																	
Circuit Design	4	5	4	5	100%										_							
Component Order	7	3	9	3	100%																	
First Semester Deliverables	1	15	1	6	71%																	
Project Completion	1	39	1	6	30%																	
Building the circuits	10	2	12	2	50%																	
test and improve	13	27	13	27	0%																	

Individual tasks to be completed before next meeting:

Everyone:

- Weekly reflection
- Rectification Team
 - Solder Rectifying Circuit
- Power Team
 - o IGBT Gate Voltage
- Chassis Team
 - IR Camera
 - o Assembly
- M.C.
 - o Learn about and test integrated IGBT temp sensor.
 - Continue investigating Hall Effect high current sensors
 - Meet with Gary Tuttle to verify some aspects of IGBT operation